Calculation policy: Guidance

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model.	Adding three single digits.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.
Addition	Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Use of base 10 to combine two numbers.	Using place value counters (up to 3 digits).	(up to 4 digits)	Use of place value counters for adding decimals.	Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back	Counting back Find the difference	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.
Subtraction	Find the difference	Part whole model	(up to 3 digits using place value counters)	(up to 4 digits)	Abstract for whole numbers.	Abstract methods. Place value counters
btra	Part whole model	Make 10			Start with place value counters for	for decimals- with different amounts of
Su	Make 10 using the ten frame	Use of base 10			decimals- with the same amount of decimal places.	decimal places.

Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit-concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all. 4	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4+2

Regrouping to make 10; using ten frames and Children to draw the ten frame and counters/cubes. Children to develop an understanding counters/cubes or using Numicon. of equality e.g. 6+5 $6 + \Box = 11$ $6 + 5 = 5 + \square$ $6 + 5 = \Box + 4$ TO + O using base 10. Continue to develop understanding Children to represent the base 10 e.g. lines for tens and 41+8 of partitioning and place value. dot/crosses for ones. 1+8=9 40 + 9 = 4941+8 105 15 1111 TO + TO using base 10. Continue to develop Chidlren to represent the base 10 in a place value chart. Looking for ways to make 10. understanding of partitioning and place value. 105 15 36 + 25= 30 + 20 = 50 36 + 255 + 5 = 1010s 15 111 50 + 10 + 1 = 61 5 36 +25 Formal method: 6

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243

+368 611

Conceptual variation; different ways to ask children to solve 21 + 34

	?
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21+34 = 55. Prove it

21

<u>+34</u>

21+34=

= 21 + 34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s
0	0
000	?
?	5 -

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	8880	3 7
Counting back (using number lines or number tracks) children start with 6 and count back 2.	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and
6 - 2 = 4	12345678910	show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10		11176111111

Finding the difference (using cubes, Numicon or Cuisenaire Children to draw the cubes/other concrete objects which Find the difference between 8 and 5. rods, other objects can also be used). they have used or use the bar model to illustrate what they need to calculate. 8 - 5, the difference is Calculate the difference between 8 and 5. Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference. Making 10 using ten frames. Children to present the ten frame pictorially and discuss Children to show how they can make 14 - 5 what they did to make 10. 10 by partitioning the subtrahend. - 4 14 - 5 = 90000 14 - 4 = 1010 - 1 = 9Column method using base 10. Children to represent the base 10 pictorially. Column method or children could count back 7. 48-7 105 15 15 10s 15 10s :222 4 1

186

?

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups-3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Formal column method with place value counters. 6 x 23

Children to represent the counters/base 10, pictorially e.g. the image below.

1005	10s	15
Q	000000	000000000000000000000000000000000000000

Formal written method

$$6 \times 23 =$$

23

1 1

1 2 4 × 2 6

2 4 8 0

Answer: 3224

When children start to multiply 3d x 3d and 4d x 2d etc., they should be confident with the abstract:

To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .

Conceptual variation; different ways to ask children to solve 6 × 23

23 23 23 23 23 23

2

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that 6×23 = 138

Find the product of 6 and 23

6 × 23 =

= 6 × 23

× 23 × 6

What is the calculation? What is the product?

100s	10s	1s
	000000	000

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	А	Abstract		
Sharing using a range of objects. 6 + 2	Represent the sharing pictorially.	6+2=3			
	\odot	3	3		
	?	Children should al their 2 times table	so be encouraged to use as facts.		
Repeated subtraction using Cuisenaire rods above a ruler. 5 + 2	Children to represent repeated subtraction pictorially.	Abstract number I	ine to represent the equal been subtracted.		
-2 -2 -2 0 1 2 3 4 5 6 7 8 9 10	0000000	612	-2 -2 3 4 5 6 roups		
3 groups of 2					

Short division using place value counters to group. 615 ÷ 5

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters 2544 + 12

1000s	100s	10s	1s	
00	0000	0000	0000	1
1000s	100s	10s	1s	
	0000	6006	0000	
	8000			

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

1000s	100s	10s	1s
	0000 0000 0000 0000 0000	0000	0000

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

	12 2544	
5.	14	

0.2.1

1000s	100s	10s	1s
	00000	0000	2000
	0000	0000	2000
	9000		8888

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

615 + 5 =

= 615 + 5

What is the calculation? What is the answer?

